
5.11 MIGRATION OF WSR-88D SIGNAL PROCESSING FUNCTIONALITY TO OPEN SYSTEMS

Sebastian M. Torres(1) and Allen Zahrai(2)

(1) Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma
(2) NOAA/ERL/National Severe Storms Laboratory

Norman, Oklahoma

1. INTRODUCTION

From its inception, the WSR-88D program has
recognized the need for system enhancement and
growth. Under the NEXRAD Product Improvement (NPI)
project, the National Severe Storms Laboratory (NSSL)
designed and demonstrated an open-system
architecture for the Radar Data Acquisition (RDA)
subsystem of the WSR-88D radar (Zahrai et al. 2002).
One of the objectives of the first phase of the open RDA
(ORDA) project consisted of replacement of the signal
processing subsystem (SPS) and the RDA status and
control computer (RDASC) with a modern flexible and
scalable system. Legacy Hardwired Signal Processor
(HSP) and Programmable Signal Processor (PSP)
functionalities were successfully migrated to a
multiprocessor environment suitable for this type of
application. This paper presents a general description of
this migration process.

2. SIGNAL PROCESSING REQUIREMENTS IN THE
WSR-88D

The WSR-88D signal processing subsystem
employs time series data from the receiver to generate
radial estimates of base data (reflectivity, Doppler
velocity, and spectrum width) for each radial bin in the
radar volume of coverage. In addition, during antenna
retrace, it performs automatic calibration routines that
monitor the status of the RDA and ensure that hardware
imperfections are measured and compensated. The
majority of the arithmetic calculations in the RDA fall
within the SPS domain. Radar signal processing
algorithms operate on a large number of range bins, and
a pipeline of different procedures is applied to each set
of data depending on the acquisition mode and
atmospheric conditions.

Legacy WSR-88D signal processing functionality
was implemented in the HSP and PSP subsystems
(Unisys Corp. 1989). The HSP receives raw data from
the receiver, processes it, and outputs it to the PSP.
Processing at the HSP consists of (Unisys Corp. 1992b,
Unisys Corp. 1993):

 conversion of digital I and Q video signals from
logarithmic to linear scaling,

 suppression of ground clutter, and
 rejection of near-channel interference.

 Corresponding author address: Sebastian M. Torres,
CIMMS/NSSL, 1313 Halley Circle, Norman, OK 73069;
email: Sebastian.Torres@noaa.gov

As such, the HSP outputs a stream of “clean”, linear,
digitized I and Q video echo samples for consecutive
range cells along successive beam sweeps.

On the other hand, the PSP handles base data
generation and the computation of calibration
parameters during antenna retrace (Unisys Corp. 1991,
Unisys Corp. 1992a). Operations in the PSP include:

 matched filtering for long pulse data,
 power and pulse-pair sum computation,
 strong point clutter censoring,
 base data computation, and
 velocity ambiguity resolution.

Inputs to the HSP are digitized I and Q video,
digitized LOG video, automatic gain control (AGC)
value, interference tag, and ground clutter filter maps.
Triplets of I, Q, and AGC values arrive to the HSP every
1.67s. Outputs from the PSP are compressed and
scaled reflectivity (Z), velocity (V), and spectrum width
(W) estimates for every range bin in the beam sweep.
These estimates are obtained with a resolution of 1 km
for Z and 250 m for V and W. Output of radial base data
to the radar product generation (RPG) group is required
at the end of the dwell time

Td = Np.Ts , (1)

where Np is the number of sweeps (pulses) in a radial
(usually one degree in extent), and Ts is the pulse
repetition time. Other PSP output data include
miscellaneous test and calibration measurement data;
however, these occur only between elevation cuts or
during antenna retrace periods.

3. MIGRATION TO OPEN SYSTEMS

System demands for intensive computations and
data throughput in a real-time environment coupled with
expandability and maintainability requirements can be
met only with a design that accommodates multiple
processors. Consequently, the ORDA signal-processing
subsystem should consist of an array of processing
elements connected through their own high-speed
interconnect (Zahrai et al. 1999).

For real-time performance of the SPS, the signal
processing algorithms have to be implemented such
that the total time to process any one radial is less than
the corresponding dwell time (1). Another migration
objective is to devise an implementation that is easy to
understand, code, debug, and port; and to provide a
program that makes the most efficient use of the unique
computational resources of a particular hardware

platform, thereby running as fast as possible
(Ackenhusen 1999).

The simplest implementation of a process would be
the one that accommodates the complete functionality
within one processor. However, for complex processes
with sizeable data volumes, latency and throughput
requirements are usually difficult to meet in a single-
processor environment. Decomposing a process into
multiple threads is important in real-time applications
since it allows these threads to execute simultaneously
on a multiprocessor system.

Concurrency can be achieved by means of data
partitioning, process partitioning, or a combination of
both. Data partitioning involves process replication by
creating clone processes, each with its own processing
resources. With this partition, input data is equally
distributed among clones, hence data throughput
increases and latency decreases with the number of
cloned processes. In cases where data partitioning is
not enough to achieve acceptable levels of throughput
and latency, a combination of data and process
partitioning is usually required. Process partitioning
entails dividing a process into simpler sub-processes to
form a pipeline. Because sub-process threads can
execute in parallel, the implementation exhibits
additional throughput and latency decreases. Figure 1
shows the implementation of a process using a
combination of data and process partitioning.

Figure 1. Implementation of a process using (top)

single-processing environment and (bottom) a
combination of data and process partitioning in a
multiprocessor environment. Process A is partitioned
into processes A1 and A2, input data is equally divided
into 3 non-overlapping parts, and output data from each
processing pipeline is recombined at the output end.

4. DESIGN DECISIONS

When trying to exploit concurrency in a
multiprocessor environment, the designer needs to
consider the issues of parallelism, clustering, and
interprocess communications. Parallelism is inherent to
sensor-based applications. In our case, each range
radial goes through the same processing pipeline.
Clustering is defined as the process of grouping
partitioned tasks or sub-processes so that, in principle,
each cluster can be implemented to execute in a single
processor. Higher levels of partitioning will result in code
that is more complex in terms of synchronization and
control among the clusters. In addition, the overhead for
data transfers between processors increases in direct
relation to the number of clusters. Therefore, clustering
must be implemented so that required latency and
throughput levels are achieved with the minimum
amount of partitioning.

For the WSR-88D signal processing subsystem the
following functional tasks have been identified:

1. I and Q AGC correction and balance,
2. log channel linearization,
3. interference tag processing,
4. ground clutter filtering,
5. interference suppression,
6. matched filtering,
7. power sums accumulation,
8. pulse-pair sums accumulation,
9. strong point clutter censoring,
10. echo power computation,
11. Doppler velocity computation,
12. spectrum width computation,
13. reflectivity computation,
14. velocity unfolding,
15. data packing and formatting,
16. bias and noise power computation, and
17. fundamental Fourier coefficient computation.

The functions listed above can be classified as
range bin operations, pulse operations, or radial
operations. Functions in the first class are 1 through 6.
Further, functions 1 through 4 operate on independent
bins (regardless of their range location) while functions
5 and 6 operate on blocks of range bins. Functions in
the second class are 7 through 13, 16, and 17.
Functions 14 and 15 operate on radial base data, and
therefore belong to the third class.

Assuming that a single-processor implementation of
the complete functionality is not affordable, a logical
clustering for the functions listed above can be done in
terms of the previous classification. Although functions
in the first class are the simplest, the volume of input
and output data is the largest, posing a high demand on
the corresponding processors. Functions in the second
category are moderately complex, but although the input
data volume is still large, the bulk of data is reduced by
a factor of Np after processing. Lastly, functions in the
third category are highly complex, but both input and
output data streams have been reduced by a factor of
Np.

Process A

Input data Output data

Process A1 Process A2

Process A1 Process A2

Process A1 Process A2

Input

 data

Input
data 2

Input
data 1

Input
data 3

Output

data

Output
data 2

Output
data 1

Output
data 3

Process A

Additional partitioning within classes may be
needed in order to reduce the overall processing times.
The limit for partitioning is, of course, the functional unit
as listed above. Still, if processing times are not
acceptable with maximum partitioning levels, data
partitioning must be implemented within the clusters
exhibiting the most intensive computational demands. A
trial-and-error approach might be inevitable in the
process of searching for the optimum implementation on
a specific hardware architecture.

5. MIGRATION TO SHARC PROCESSORS

For the first phase of the ORDA project, SHARC
processors were adopted for the multiprocessor DSP
subsystem. The proof-of-concept (POC) ORDA utilizes
two boards from Mercury Computer Systems based on
Analog Devices ADSP-21060 SHARC chips. The
system has 18 processors (or compute environments),
13 of which are used by the POC DSP software. These
processors run MC/OS, a proprietary, POSIX-compliant,
real-time, operating system. Processors within a board
and across boards are interconnected via the high-
speed, crossbar-switch-based interconnect fabric called
RACEway. An implementation of signal processing
functionality that is specific to this hardware architecture
is described next.

Clustering was performed as shown in Table 1,
where functional tasks were grouped following the
guidelines introduced in the previous section. In
addition, due to the high volume of data, processing
speed requirements, and memory availability, data
partitioning had to be implemented for clusters 1 and 2.
Clusters 1 and 2 take 5 and 3 processors, respectively.
The goal for this partitioning was to reach processing
times no greater than 60% of the dwell time, therefore
allowing for future expansion and/or enhancements. In
addition, it was verified that deeper levels of partitioning
did not reduce processing time due to data transfers
and synchronization overheads.

Cluster Functions

1 1,2, and 3
2 4 and 5
3 6, 7, 8, 16, and 17
4 9, 10, 11, 12
5 13, 14, and 15

Table 1. Clustering of WSR-88D signal processing

functions for the SHARC implementation of the ORDA
signal processing subsystem.

6. CONCLUSIONS

This paper described the guidelines for migrating
WSR-88D signal processing functionality to open
systems. Based on signal processing requirements, the
ORDA project adopted a multiple-processor architecture
for the implementation of the SPS. The general ideas
behind the implementation of a process using real-time
multiprocessor systems were described, and several

criteria for process partitioning were discussed. Based
on the POC ORDA developed by NSSL, which has
been operational since May of 2000, the migration of
signal processing functionality to SHARC processors
was presented last.

The POC design proved able to accommodate all
real-time signal-processing functionality as well as
satisfy maintainability and expandability requirements.
Successful implementation required detailed knowledge
of the processor characteristics and resources in order
to maximize performance of each processing element.
Unlike the implementation of higher-level applications,
portability in real-time DSP applications is limited by the
underlying hardware. Because of this, NSSL is currently
working on porting the signal processing code to
PowerPC processors, the proposed architecture for the
first build of ORDA.

7. REFERENCES

Ackenhusen, J.G., 1999: Real-time signal processing:
Design and implementation of signal processing
systems, Upper Saddle River: Prentice Hall.

Unisys Corporation, 1989: Preliminary system technical
manual NEXRAD. Vol III. Rev C.1.

Unisys Corporation, 1991: Computer program
development specification for signal processing
program (B5, CPCI 02), DV1208261F.

Unisys Corporation, 1992a: Computer program product
specification for signal processing program (C5,
CPCI 02), DV1208261D.

Unisys Corporation, 1992b: Critical item development
specification for receiver/signal processor (B2, CI
04), DV1208254E.

Unisys Corporation, 1993: Critical item product
fabrication specification for receiver/signal
processor (C2b, CI 04), DV1208254G.

Zahrai, A., J. Carter, V. Melnikov, and I. Ivic, 1998: The
design of a new signal processor subsystem for the
WSR-88D (NEXRAD) radar. Preprints 14th
International Conference on IIPS, Phoenix, AZ,
Amer. Meteor. Soc., paper 7.13.

Zahrai, A., S. Torres, I. Ivic, and C. Curtis, 2002: The
open radar data acquisition (ORDA) design for the
WSR-88D. Preprints 18th International Conference
on IIPS, Orlando, FL, Amer. Meteor. Soc., paper
5.10.

