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1. INTRODUCTION 

From its inception, the WSR-88D program has 
recognized the need for system enhancement and 
growth. Under the NEXRAD Product Improvement (NPI) 
project, the National Severe Storms Laboratory (NSSL) 
designed and demonstrated an open-system 
architecture for the Radar Data Acquisition (RDA) 
subsystem of the WSR-88D radar (Zahrai et al. 2002). 
One of the objectives of the first phase of the open RDA 
(ORDA) project consisted of replacement of the signal 
processing subsystem (SPS) and the RDA status and 
control computer (RDASC) with a modern flexible and 
scalable system. Legacy Hardwired Signal Processor 
(HSP) and Programmable Signal Processor (PSP) 
functionalities were successfully migrated to a 
multiprocessor environment suitable for this type of 
application. This paper presents a general description of 
this migration process. 

2. SIGNAL PROCESSING REQUIREMENTS IN THE 
WSR-88D 

The WSR-88D signal processing subsystem 
employs time series data from the receiver to generate 
radial estimates of base data (reflectivity, Doppler 
velocity, and spectrum width) for each radial bin in the 
radar volume of coverage. In addition, during antenna 
retrace, it performs automatic calibration routines that 
monitor the status of the RDA and ensure that hardware 
imperfections are measured and compensated. The 
majority of the arithmetic calculations in the RDA fall 
within the SPS domain. Radar signal processing 
algorithms operate on a large number of range bins, and 
a pipeline of different procedures is applied to each set 
of data depending on the acquisition mode and 
atmospheric conditions.  

Legacy WSR-88D signal processing functionality 
was implemented in the HSP and PSP subsystems 
(Unisys Corp. 1989). The HSP receives raw data from 
the receiver, processes it, and outputs it to the PSP. 
Processing at the HSP consists of (Unisys Corp. 1992b, 
Unisys Corp. 1993): 

 conversion of digital I and Q video signals from 
logarithmic to linear scaling,  

 suppression of ground clutter, and  
 rejection of near-channel interference.  

                                                           
 Corresponding author address: Sebastian M. Torres, 
CIMMS/NSSL, 1313 Halley Circle, Norman, OK 73069; 
email: Sebastian.Torres@noaa.gov 

As such, the HSP outputs a stream of “clean”, linear, 
digitized I and Q video echo samples for consecutive 
range cells along successive beam sweeps.  

On the other hand, the PSP handles base data 
generation and the computation of calibration 
parameters during antenna retrace (Unisys Corp. 1991, 
Unisys Corp. 1992a). Operations in the PSP include: 

 matched filtering for long pulse data, 
 power and pulse-pair sum computation,  
 strong point clutter censoring,  
 base data computation, and 
 velocity ambiguity resolution. 

Inputs to the HSP are digitized I and Q video, 
digitized LOG video, automatic gain control (AGC) 
value, interference tag, and ground clutter filter maps. 
Triplets of I, Q, and AGC values arrive to the HSP every 
1.67s. Outputs from the PSP are compressed and 
scaled reflectivity (Z), velocity (V), and spectrum width 
(W) estimates for every range bin in the beam sweep. 
These estimates are obtained with a resolution of 1 km 
for Z and 250 m for V and W. Output of radial base data 
to the radar product generation (RPG) group is required 
at the end of the dwell time  

 
Td = Np.Ts , (1) 
 
where Np is the number of sweeps (pulses) in a radial 
(usually one degree in extent), and Ts is the pulse 
repetition time. Other PSP output data include 
miscellaneous test and calibration measurement data; 
however, these occur only between elevation cuts or 
during antenna retrace periods. 

3. MIGRATION TO OPEN SYSTEMS 

System demands for intensive computations and 
data throughput in a real-time environment coupled with 
expandability and maintainability requirements can be 
met only with a design that accommodates multiple 
processors. Consequently, the ORDA signal-processing 
subsystem should consist of an array of processing 
elements connected through their own high-speed 
interconnect (Zahrai et al. 1999).  

For real-time performance of the SPS, the signal 
processing algorithms have to be implemented such 
that the total time to process any one radial is less than 
the corresponding dwell time (1). Another migration 
objective is to devise an implementation that is easy to 
understand, code, debug, and port; and to provide a 
program that makes the most efficient use of the unique 
computational resources of a particular hardware 



platform, thereby running as fast as possible 
(Ackenhusen 1999). 

The simplest implementation of a process would be 
the one that accommodates the complete functionality 
within one processor. However, for complex processes 
with sizeable data volumes, latency and throughput 
requirements are usually difficult to meet in a single-
processor environment. Decomposing a process into 
multiple threads is important in real-time applications 
since it allows these threads to execute simultaneously 
on a multiprocessor system.  

Concurrency can be achieved by means of data 
partitioning, process partitioning, or a combination of 
both. Data partitioning involves process replication by 
creating clone processes, each with its own processing 
resources. With this partition, input data is equally 
distributed among clones, hence data throughput 
increases and latency decreases with the number of 
cloned processes. In cases where data partitioning is 
not enough to achieve acceptable levels of throughput 
and latency, a combination of data and process 
partitioning is usually required. Process partitioning 
entails dividing a process into simpler sub-processes to 
form a pipeline. Because sub-process threads can 
execute in parallel, the implementation exhibits 
additional throughput and latency decreases. Figure 1 
shows the implementation of a process using a 
combination of data and process partitioning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Implementation of a process using (top) 

single-processing environment and (bottom) a 
combination of data and process partitioning in a 
multiprocessor environment. Process A is partitioned 
into processes A1 and A2, input data is equally divided 
into 3 non-overlapping parts, and output data from each 
processing pipeline is recombined at the output end. 

4. DESIGN DECISIONS 

When trying to exploit concurrency in a 
multiprocessor environment, the designer needs to 
consider the issues of parallelism, clustering, and 
interprocess communications. Parallelism is inherent to 
sensor-based applications. In our case, each range 
radial goes through the same processing pipeline. 
Clustering is defined as the process of grouping 
partitioned tasks or sub-processes so that, in principle, 
each cluster can be implemented to execute in a single 
processor. Higher levels of partitioning will result in code 
that is more complex in terms of synchronization and 
control among the clusters. In addition, the overhead for 
data transfers between processors increases in direct 
relation to the number of clusters. Therefore, clustering 
must be implemented so that required latency and 
throughput levels are achieved with the minimum 
amount of partitioning. 

For the WSR-88D signal processing subsystem the 
following functional tasks have been identified: 

1. I and Q AGC correction and balance, 
2. log channel linearization, 
3. interference tag processing, 
4. ground clutter filtering, 
5. interference suppression, 
6. matched filtering, 
7. power sums accumulation, 
8. pulse-pair sums accumulation, 
9. strong point clutter censoring, 
10. echo power computation, 
11. Doppler velocity computation, 
12. spectrum width computation, 
13. reflectivity computation, 
14. velocity unfolding, 
15. data packing and formatting, 
16. bias and noise power computation, and 
17. fundamental Fourier coefficient computation. 

The functions listed above can be classified as 
range bin operations, pulse operations, or radial 
operations. Functions in the first class are 1 through 6. 
Further, functions 1 through 4 operate on independent 
bins (regardless of their range location) while functions 
5 and 6 operate on blocks of range bins. Functions in 
the second class are 7 through 13, 16, and 17. 
Functions 14 and 15 operate on radial base data, and 
therefore belong to the third class.  

Assuming that a single-processor implementation of 
the complete functionality is not affordable, a logical 
clustering for the functions listed above can be done in 
terms of the previous classification. Although functions 
in the first class are the simplest, the volume of input 
and output data is the largest, posing a high demand on 
the corresponding processors. Functions in the second 
category are moderately complex, but although the input 
data volume is still large, the bulk of data is reduced by 
a factor of Np after processing. Lastly, functions in the 
third category are highly complex, but both input and 
output data streams have been reduced by a factor of 
Np. 
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Additional partitioning within classes may be 
needed in order to reduce the overall processing times. 
The limit for partitioning is, of course, the functional unit 
as listed above. Still, if processing times are not 
acceptable with maximum partitioning levels, data 
partitioning must be implemented within the clusters 
exhibiting the most intensive computational demands. A 
trial-and-error approach might be inevitable in the 
process of searching for the optimum implementation on 
a specific hardware architecture. 

5. MIGRATION TO SHARC PROCESSORS 

For the first phase of the ORDA project, SHARC 
processors were adopted for the multiprocessor DSP 
subsystem. The proof-of-concept (POC) ORDA utilizes 
two boards from Mercury Computer Systems based on 
Analog Devices ADSP-21060 SHARC chips. The 
system has 18 processors (or compute environments), 
13 of which are used by the POC DSP software. These 
processors run MC/OS, a proprietary, POSIX-compliant, 
real-time, operating system. Processors within a board 
and across boards are interconnected via the high-
speed, crossbar-switch-based interconnect fabric called 
RACEway. An implementation of signal processing 
functionality that is specific to this hardware architecture 
is described next. 

Clustering was performed as shown in Table 1, 
where functional tasks were grouped following the 
guidelines introduced in the previous section. In 
addition, due to the high volume of data, processing 
speed requirements, and memory availability, data 
partitioning had to be implemented for clusters 1 and 2. 
Clusters 1 and 2 take 5 and 3 processors, respectively. 
The goal for this partitioning was to reach processing 
times no greater than 60% of the dwell time, therefore 
allowing for future expansion and/or enhancements. In 
addition, it was verified that deeper levels of partitioning 
did not reduce processing time due to data transfers 
and synchronization overheads. 

 
Cluster Functions 

1 1,2, and 3 
2 4 and 5 
3 6, 7, 8, 16, and 17 
4 9, 10, 11, 12 
5 13, 14, and 15 

 
Table 1. Clustering of WSR-88D signal processing 

functions for the SHARC implementation of the ORDA 
signal processing subsystem. 

6. CONCLUSIONS 

This paper described the guidelines for migrating 
WSR-88D signal processing functionality to open 
systems. Based on signal processing requirements, the 
ORDA project adopted a multiple-processor architecture 
for the implementation of the SPS. The general ideas 
behind the implementation of a process using real-time 
multiprocessor systems were described, and several 

criteria for process partitioning were discussed. Based 
on the POC ORDA developed by NSSL, which has 
been operational since May of 2000, the migration of 
signal processing functionality to SHARC processors 
was presented last.  

The POC design proved able to accommodate all 
real-time signal-processing functionality as well as 
satisfy maintainability and expandability requirements. 
Successful implementation required detailed knowledge 
of the processor characteristics and resources in order 
to maximize performance of each processing element. 
Unlike the implementation of higher-level applications, 
portability in real-time DSP applications is limited by the 
underlying hardware. Because of this, NSSL is currently 
working on porting the signal processing code to 
PowerPC processors, the proposed architecture for the 
first build of ORDA. 
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